Métricas ad-invariantes em Álgebras de Lie

Número: 
1
Ano: 
2023
Autor: 
Marcos Ricardo Cavicchioli de Almeida
Abstract: 

 

Este material ´e resultado de um trabalho de inicia¸c˜ao cient´ıfica, projeto de n´umero 2022/07595-
9 fomentado pela FAPESP. Para seu uso, ´e esperado que o estudante j´a tenha feito um curso
b´asico de ´algebra linear e esteja familiarizado com espa¸cos vetoriais, transforma¸c˜oes lineares,
produto interno, etc. Para uma revis˜ao desses assuntos, as referˆencias [3] e [6] s˜ao boas op¸c˜oes.

Neste projeto, o objetivo principal foi o estudo de ´algebras de Lie munidas de m´etricas adinvariantes.
Numa primeira instˆancia, se estudou a estrutura de uma ´algebra de Lie, que n˜ao ´e
nada mais do que um espa¸co vetorial dotado de uma transforma¸c˜ao bilinear que satisfaz certas
propriedades (chamada comumente de colchete de Lie), [5]. Como primeiros exemplos foram
trabalhados espa¸cos vetoriais not´aveis de matrizes, como sl(n,R), so(n,R), sp(n,R), que s˜ao
´algebras de Lie cl´assicas com m´etricas ad-invariantes [5], [7], [3].

Com o estudo de formas bilineares, a ideia de m´etrica pode ser apresentada, bem como o
estudo de ´algebras de Lie com uma abordagem mais abstrata, [3], [5], [4], [8]. Atrav´es do c´alculo
da forma de Cartan-Killing nos espa¸cos cl´assicos de matrizes, foi poss´ıvel verificar que o colchete
de Lie ´e antissim´etrico. Uma m´etrica ´e uma forma bilinear n˜ao-degenerada que busca expandir
a no¸c˜ao de produto interno em espa¸cos vetoriais, e o fato de uma m´etrica ser ad-invariante
significa que o colchete de Lie define transforma¸c˜oes antissim´etricas com respeito `a m´etrica.

Finalmente, se estudou no fim do projeto o processo de extens˜ao dupla introduzido por Favre
e Santharoubane ([1]), ainda que em alguns exemplos pontuais. Este processo permite construir
´algebras de Lie com m´etricas ad-invariantes a partir de ´algebras com a mesma estrutura, mas
com dimens˜oes menores. Assim, foi poss´ıvel construir ´algebras de Lie de dimens˜oes baixas
partindo de ´algebras abelianas de dimens˜ao 1 ou 2.

Observação: 
RP 01/2023
Arquivo: